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ABSTRACT

A slightly random source is a source of bits, where the bias of each
bit, between 1/2+¢ and 1/2 — ¢ for some £ > 0, is fixed by an
adversary who has a complete knowledge of all the previous bits. We
study the propertics of sequences of n consecutive bits generated by
such a source. In particular we show that for most subsets S of half
of the n-binary vectors, even a fixed bias £ > (. and arbitrarily large,
n will not enable the adversary (who knows §) to avoid it wilh
probability approaching 1 as n tends to infinity. Also, for every n and
every S < [0,1},| S| = 2, if ¢ < 1/(2/n) then the adversary can-
not decrease the probability of landing in § below 1/6. These results
mean that for randomized algorithms such as primality testing, even
a fairly biased coin will produce good answers, without any change
in the algorithm.
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1. INTRODUCTION

Several applications, such as randomized algorithms [Ra]. require
a source of fair coin flips. The available physical sources are imper-
fect. The simplest model of such an imperfect source of random bits
1s a coin whose flips are independent, and each has a fixed (and
unknown) bias. von Neumann [vN] gave a simple algorithm for
generating absolutely random independent bits from such a coin.
Blum [BI] (see also Elias [El]) generalized this algorithm to the case
where the imperfect random source is an n-state Markov chain.
This algorithm, however, is not useful for very large n since it
produces bits only when states are repeated. A very general model
of an imperfect source of randomness is considered by Santha and
Vazirani [SV] and by Vazirani [V] (see also [CG, VV]). In this
model, the next bit is an output of a coin whose bias (between
1/2 + ¢ and 1/2 — & for some 0 < ¢ < 1/2) is fixed by an adversary
who has a complete knowledge of all the previous bits. Thus the
previous bits can condition the next bit in an arbitrary bad way.
Such a source is called a slightly random source in [SV], and as is
explained in [Mu] it includes the known physical sources of ran-
domness as, e.g., zener diodes. The algorithms of [SV, V], for
extracting almost fair coin flips from such a model, use the existence
of at least two independent slightly random sources. It is not clear
at all that such an assumption is practical. The bad behavior of the
sources might arise from the environment’s influence and then the
sources influence each other. On the other hand, it is trivial to show
that no such algorithm that uses a single slightly random source
exists. Thus it is interesting to check the properties of a single
slightly random source. In this chapter we show that under reason-
able assumptions n consecutive output bits of a single slightly
random source form a “‘reasonable random™ n-binary vector. In a
typical randomized algorithm (such as the known primality test
algorithms see [Ra]), we choose randomly an n vector and we
succeed if this vector corresponds to a “witness™. Suppose that the
set of witnesses S forms a constant fraction ¢ (0 < ¢ < 1) of all 2"
possible vectors. Our first observation is that if () = d/./n, then
even an adversary who tries to avoid S and chooses the bias of every
flip between 1/2 — &(n) to 1/2 + e(n) has a probability f(c,d) > 0
(independent of n) of getting an n vector in S. This result is sharp.

More surprising is our second result, which shows that under the
(plausible) assumption that the set S of witnesses is a random set,
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even fixed bias ¢ > 0 and arbitrarily large n will not enable the
adversary (who knows §) to avoid it with probability -+ 1 asn — 0.
Thus, for example, if ¢ = 0.05 and # is large, then for almost every
subset S of the set of all 2" binary vectors, an adversary who knows
S and tries to avoid it by choosing the bias of each of his coin flips
between 1/2 — & to 1/2 + ¢ (taking into account the results of the
previous flips). will get a vector of § with probability > 1/4.
Therefore, for almost all sets S, a weakly random source is reason-
able, even under adversary assumptions.

Very recently, Vazirani and Vazirani [VV] (see also [CG] for
some extensions) have found a clever algorithm that works for
every set S of ¢+2" witnesses in the following sense. In the
algorithm, a single slightly random source is used to produce a large
polynomial number of n-vectors, at least one of which belongs to S
with probability f(¢) > 0 (independent of »).

In the present chapter we do not discuss possible algorithms to
obtain witnesses with high probability, but rather study the proper-
ties of the bits produced directly by a single weakly random source.
We believe that this supplies a better understanding of the.behavior
of such a source. Moreover, in our approach (unlike in the more
sophisticated algorithms of [VV,CG]) we need only n slightly
random bits to produce an n bit number, and we do not need any
extra space.

The chapter is organized as follows. In Section 2 we find, for
every bias 0 < & < 1/2, for every n, and for every 0 < &k < 27, the
“worst possible™ set S of n-vectors of cardinality k. In Section 3 we
consider random sets S. Section 4 contains some concluding
remarks.

2. THE EXTREMAL CASE

We begin with some notation. Forn = 1 let N = N(n) denote the
set of all binary vectors of length n. For 0 < e < 1/2, let F(n.¢) be
the following set of strategies F for choosing a binary vector
(X, X3,...,x,)EN. x,€{0, 1} is chosen according to the probability
distribution Prob(x; = 0) = p, = p,(F) where 1/2 —e<p, <
1/2 4 &. (The value of p, is determined by the strategy F.) For every
given binary values of x,...,x;_,, x;€{0, 1} is chosen according
to the probability distribution Prob(x; = 0) = p,, where p, =
Pi(Fyxyye-.,%_)satisfies 12 —e<p, < 1/2 + 6.
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Let S be a set of binary vectors of length n. Define P(S,¢) =
MiNg, g, Prob{(x;, x;, ..., x,) € 8; (x;, x3,,..., x,) is chosen accord-
ing to F}. Thus P(S,¢) is the minimal possible probability of a
binary vector to be in S if it is chosen according to one of the
strategies in F(n, ¢). [That is, according to biased coin flips, each in
the range (1/2 — ¢, 1/2 + &), where the bias is chosen by an adversary
who knows the previous flips results, knows §, and tries to avoid it.]

Define a linear order on the set of all binary vectors of length »
as follows: fu = (u,uy,...,u,), v = (v,0y,...,9, ) thenu < viff
U T OOt = Y and T w2 <P 02 Aset S
of binary vectors is called compressed if ve S and u 2 v —-ueS. It
is easy to check that if § is compressed then it contains all vectors
with at most j 0's and possibly some vectors with precisely j + 1 0’s,
where 0 < j < n satisfies

foem<if) e

i=0

Finally, for a set § € N we denote by CS the unique compressed set
of cardinality | §|.

PROPOSITION 2.1. (1) For every 0 < & € 1/2 and for every set S of
hinary vectors

P(S,&) = P(CS, ).

(1) Suppose 0 <& < 1/2 and S, j satisfy (2.1). Put r = | S| —

SI_o(®). Then

P(CS,¢) = iu (';)(UZ + 8)'(1/2 - &)"!

Fre (12 + (12 — gy,

That is, the best adversary’s strategy to aveid CS is to bias each flip,
as strongly as he can, toward 0.

Proof. The set N of all 2" binary vectors can be naturally
represented by the set of all leaves of a rooted binary tree ol height
n. Each left edge represents a zero and each right edge a 1. A leafl
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corresponds to the vector arising from the edges of the unique path
from the root to the leaf. Any strategy Fe F(n,¢) is an assignment
of a pair of probabilities 1/2 —e<p,g<1/2+¢,p+qg =1 to
each pair of edges that emanates from a common parent. It is easy
to check that we can assume that the adversary always chooses, for
each pair of probabilities, either p = 1/2—¢ or p = 1/2 + .
Indeed, from each parent he will prefer to go with the highest
possible probability to the child from whom he has more chances
to avoid S. Thus, we can assume that each flip is as biased as
possible.

For a vector v = (v,,7,,...,7,)eN put p(z) = (1/2 — gl e~
(12 + &)V/=% If each flip is as biased as possible then the
sequence of probabilities of the leaves of our tree is clearly some
permutation of the numbers {p(v):ve N }. The total probability of
vectors in S is thus at least the sum of the | §| smallest numbers in
the sequence {p(v):ve N}. These numbers are, however, precisely
those whose sum is given in part (ii) of the proposition, and if S is
compressed the strategy of always preferring 0 achieves this bound.
This completes the proof. .

Since a binomial distribution can be approximated by a normal
one, one can get a very good estimate for the bound supplied by
Proposition 2.1. Thus, for example, it implies that for all fixed ¢,
d> 0 there exists an [/ = f(c,d)>0 such that if S= N,
|S| = ¢+2"and & = &(n) = d//n then P(S,¢) > P(CS,¢) > f. On
the other hand if ¢ = &(n) = dg(n)fﬁ where g(n) — co arbitrarily
slowly it is easy to check that lim,_ , P[CS,e(n)] = 0.

As a special case we mention that if | S| = /22", ¢ = ¢(n) =
[/(24/n) then the normal approximation gives that P(S, &) = 1/6.

REMARK 2.2. The assertion of Proposition 2.1 can be easily
generalized to the case of a random “‘dice™ (¢ > 2 possible results at
each flip). This can be used to improve some of the results of [TRV].
We omit the details.

3. THE RANDOM CASE

In this section we show that for a random subset .S of binary vectors
of length n, even a fixed bias ¢ > 0 and arbitrarily large » wiil not
znable the adversary, who knows §, to avoid it with probability — |
as n— oo,
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Let S be a random subset of N. That is, each ve N is in S with
probability 1/2, independently. For each 0 < & < 1/2, P(S,¢) is now
a random variable (on the space of all possible 2*" subsets §). Let
E = E,, = E[P(S.¢)lando = 0,, = o[P(S, £)] denote the expected
value and the standard deviation of 2(S, &).

THEOREM 3.1.  For every ¢ > 0 that satisfies 1/2 + 2&8° + 2e< |
and for every n:

E.;a:]—(] J% )

w2 1 — 12+ 22 + 2

and
6. < 1/2(1/2 + 2e? + 2e)'2.

Thus, for example, ife = 0.05then E,, > 1/3and g, < (0.78)".
Hence, by Chebyshev’sinequality [F, p. 219], forrandom S < N(n),
the probability that P(S,¢) is smaller than 0.3 is at most
(0.03)~% - (0.78)*. That is, almost for every, S, P(S,2) = 0.3.

To prove our theorem we need some preparations and a prob-
abilistic lemma.

For a given set S and a given ¢, one can easily convince himself
that P(S,¢) can be computed as follows: Let T be a binary tree of
depth n whose leaves correspond naturally to the binary vectors of
length n. Label a leaf corresponding to a vector » by 0 if ¢ S and
by 1 if veS. Now label, recursively, each parent f of the already
labeled children s,, s, with the following real number: Suppose
s; 1s labeled by r;, then the label of f is (1/2 { &)min(r,,r;) |
(1/2 — eymax(r,,r,). One can check that the label of the root is
P(S,¢). In Figure 1 we have an example of n = 3, §' = {000, 001,
011, 111}, & = 0.1). Here P(S,¢) = 0.352.

Suppose now that S'is a random set of vectors in N(n). We have
to estimate the expected value and the standard deviation of the
random variable P(S.¢). We need the following lemma.

LeMMA 3.2. Let X, X, be two independent random variables,
each with expected value E and standard deviation o. Put

Y = (1/2 + g)ymin(X;, X;) + (1/2 — &) max(X;, X;)

X, + X
=-'1"2'“2 - el X - Xl
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0.332 =0.6-0.16 +0.40.64

064 =04'1+06-04 0.16 =0.4:0.4
1 1 0 1 0 0 i 7 1
Then
E(Y)2 E — \J2e0 (3.1
o(Y) < /1/2 + 26 + 2e0. (3.2)
Figure 1.

Proof. By Jensen's inequality E(| X, — X,|)’ < (E| X, — X;|)%.
However, E(| X, — X, | = E[(X| — X,)] — [E(X, — X;)]* =
Var(X, — X,;) = 20. Hence E| X, — X;| € .\/50' and (3.1) follows.
To prove (3.2) we compute ¢*(Y) = Var(Y) = E(Y?) - [E(Y)].

Var(Y) = 1/4Var(X, + X,) + ¢*Var| X, — X5|
+5{E(X| + X)) E|X, — X;| = E[(X, + X5)| X, — Xz”}
< 1/26% + 266 + ¢{E(X, + X,) E| X, — X, |
— E[(X, + X)X, — X511}

For every two random variables Z, T, | E(Z) E(T) — E(ZT)| <
JVarZ./VarT. [This is the well-known fact that the correlation
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constant 1s, m absolute value, at most 1, or can be derived by
applying Cauchy-Schwarz inequality to obtain {E[(Z — EZ)
(T — ET))}Y < E(Z — EZYE(T — ET) ] Applying this to Z =
X+ X,, T =|X, — X,| we conclude that

E(X, + X,) E1 X, — X5} — E[(X, + X5)] X, — X3])

< JVYar(X, + X,) - Var[ X, — X5 < \J/4c* = 207
Hence Var(Y) < (1/2 + 2&* + 2¢)6® and (3.2) follows. O

Consider now the random variable P(S,¢) when § is chosen
randomly. Define a sequence of random variables X;, X, ..., X, as
follows. Prob(X, = 0) = 1/2, Prob(X, = 1) = 1/2. For i>0,
X, is obtained from X, as follows: let Z,, Z, be two independent
random variables having the probability distribution of X; and put
X, = (ij2Z+ e)min{Z,, Z,) + (i/2 — ¢)max(Z,, Z,). Cleariy X, is
the random variable P(S,e¢). Since E(X,) = a(X;) = 1/2 repeated
application of Lemma 3.2 implies

-

1
a
-1+ 2+ 2

E(X,) =2 E(X,) — \fj&' (Xp)

= 1/2{1 — /2/[1 — (1/2 + 2¢* + 2¢)*]}
a(X,) < (1/2 + 2¢* + 26)"0(X,) = 1/2(1/2 + 26° + 26"
This proves Theorem 3.1. O]

It is worth noting that we can slightly improve our bounds to
show that E > 0 provided 1/2 + 2&’ + 2¢ < 1. We omit the details.

4. CONCLUDING REMARKS

We have shown that under reasonable assumptions the output bits
of a single weakly random source are reasonably random. Thus,
e.g., by the observation of Section 2,a 1/2 + (1/2,/900) = 1/2 + 160
biased coin is reasonably good, even under adversary assumptions,
for checking primality of a 900-bit number using the randomized
algorithm of [Ra]. Under the (plausible) assumption that the set of
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witnesses is random, even a much worse coin is sufficient, by the
results of Section 3.

It would be interesting to decide if E,, defined in Section 3 is
bounded away from 0 for every fixed ¢ > 0.
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